Acute and Long-term Results of Bipolar Radiofrequency Catheter Ablation of Refractory Ventricular Arrhythmias with Deep Intramural Origins

Department of Cardiology, Faculty of Medicine, University of Tsukuba

Miyako IGARASHI, Akihiko NOGAMI

The Korean Heart Rhythm Society COI Disclosure

Name of first author: Miyako IGARASHI

The authors have no financial conflicts of interest to disclose concerning the presentation.

Introduction

- Radiofrequency catheter ablation (RFCA) is one of the therapies for ventricular tachycardia (VT).
- However, if the arrhythmia's origin or circuit is located at deep intramural sites, RFCA might be difficult and fail.
- If endocardial or epicardial approaches do not suppress VT, some patients may require intramural or transmural ablation.

Bipolar ablation

Koruth JS, Reddy VY et al. Heart Rhythm 2012; 9: 1932 - 41

Acute and long-term results of bipolar radiofrequency catheter ablation of refractory ventricular arrhythmias of deep intramural origin (9)

Miyako Igarashi, MD,* Akihiko Nogami, MD,* Seiji Fukamizu, MD,[†] Yukio Sekiguchi, MD,* Junichi Nitta, MD,[‡] Naka Sakamoto, MD,[§] Yuichiro Sakamoto, MD,[¶] Kenji Kurosaki, MD,[∥] Yoshihide Takahashi, MD,** Akira Kimata, MD,* Yuki Komatsu, MD,* Takeshi Machino, MD,* Kenji Kuroki, MD,* Hiro Yamasaki, MD,* Kazutaka Aonuma, MD,* Masaki Ieda, MD*

From the *Department of Cardiology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan, [†]Department of Cardiology, Tokyo Metropolitan Hiroo Hospital, Tokyo, Japan, [‡]Department of Cardiology, Saitama Red Cross Hospital, Saitama, Japan, [§]Department of Cardiology, Asahikawa Medical University, Hokkaido, Japan, [¶]Department of Cardiology, Toyohashi Heart Center, Aichi, Japan, [∥]Department of Heart Rhythm Management, Yokohama Rosai Hospital, Kanagawa, Japan, and **Department of Cardiovascular Medicine, Disaster Medical Center, Tokyo, Japan.

BACKGROUND Successful bipolar radiofrequency catheter ablation (RFCA) of refractory ventricular arrhythmias (VAs) has been reported. However, the efficacy, safety, and long-term outcomes of bipolar RFCA of VAs are not fully determined.

OBJECTIVE The purpose of this study was to evaluate the effectiveness and safety of bipolar RFCA in treating refractory VAs during long-term follow-up.

METHODS Eighteen patients who underwent bipolar RFCA for ventricular tachycardia (VT) at 7 institutions were retrospectively investigated. Underlying heart diseases included remote myocardial infarction (n = 3 [17%]) and nonischemic cardiomyopathy (n = 15 [83%]). Although unipolar RFCA was performed in all patients, either it failed to suppress VT or VT recurred. The interventricular septum, left ventricular free wall, and left ventricular summit were targeted for bipolar RFCA.

RESULTS Acute success (VT termination and/or noninducibility) was achieved with bipolar RFCA in 16 patients (89%). Complications during the procedure included complete atrioventricular block (n =

2) and coronary artery stenosis (n = 1). One patient underwent chemical ablation after bipolar RFCA failure. At 12-month followup, VT reoccurred in 8 patients (44%). However, in patients with recurrence, VT burden had decreased: only 4 patients underwent re-RFCA, and only 1 of the 4 required chemical ablation. In the remaining 4 patients, re-RFCA was not required, as VT was controlled by medication or an implantable cardioverter-defibrillator.

CONCLUSION Bipolar RFCA is useful for acute suppression of refractory VT. Although VT recurrence rates during long-term followup were relatively high, we observed a significant reduction in VT burden.

KEYWORDS Bipolar ablation; Complication; Outcome; Radiofrequency catheter ablation; Ventricular arrhythmias

(Heart Rhythm 2020; ■:1–8) © 2020 The Authors. Published by Elsevier Inc. on behalf of Heart Rhythm Society. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

Study population

- 18 patients with structural heart disease who underwent <u>their first bipolar RFCA</u> for VT at 7 institutions from 2012 to 2017 were retrospectively investigated.
- Although unipolar RFCA was performed in all patients, either it failed to suppress VT or VT recurred.

Bipolar ablation setup

A representative case

- <u>63 years old, man with cardiac sarcoidosis</u> and ventricular tachycardia (VT). He received an ICD implantation.
- He was admitted to our institution due to frequent defibrillator shocks.
- Echocardiography showed reduced left ventricular systolic function with a 50% of ejection fraction and an <u>aneurysm</u> in the basal septum.

Clinical VPC and induced VTs

Mapping at LV septum

Pacemapping at LV septum

LAO

Another VT was induced after LV ablation

Mapping and RFCA at RV septum

VT1

Other VTs were induced after unipolar RFCA at LV and RV septum

Bipolar ablation at ventricular septum

A representative case 2 with HCM and VT

Baseline characteristics

Casa		gondor	underlying beart disease		UCG		Prior cossions
Case	age, years	genuer	underlying heart disease	ICD	DD, mm	EF, %	FII01 SESSIONS
1	74	М	cardiac sarcoidosis	CRTD	53	43	2
2	56	М	remote myocardial infarction	none	55	47	1
3	73	М	non-ischemic cardiomyopathy	none	50	44	1
4	63	М	cardiac sarcoidosis	ICD	60 55		5
5	61	М	non-ischemic cardiomyopathy	none 57 51		51	1
6	65	М	cardiac sarcoidosis	ICD 53		51	2
7	73	М	LV aneurysm	ICD 64		44	0
8	70	М	non-ischemic cardiomyopathy, p-AVR	ICD 73 12		12	2
9	63	М	hypertrophic cardiomyopathy	ICD	52 40		1
10	71	М	hypertrophic cardiomyopathy	none	none 54 40		2
11	67	М	remote myocardial infarction	ICD 75 21		2	
12	71	М	dilated cariomyopathy	none 60 29		29	2
13	70	М	remote myocardial infarction	ICD 59 42		42	1
14	60	М	dilated cariomyopathy	none 74 21		21	2
15	52	М	cardiac sarcoidosis	ICD 59 40		1	
16	64	F	dilated cariomyopathy	none 57 40		2	
17	68	F	cardiac sarcoidosis	CRTD) 43 51		3
18	45	М	hypertrophic cardiomyopathy	ICD	ICD 54 61		1
$m \pm SD$	65±8	16M			58±9	41±13	1.7±1.1

The acute results of bipolar ablation

No.	VT	target site	ablation catheter (1)		ablation catheter $\textcircled{2}$		acute success	acute result	
1	3	septum	IR	LV septum	IR	RV septum	yes	termination and non-sustainable	
2	2	septum	IR	LV septum	IR	RV septum	yes	non-inducible	
3	1	septum	IR	LV septum	IR	RV septum	yes	NSVT elimination	
4	5	septum	IR	LV septum	IR	RV septum	yes	non-inducible	
5	3	LV summit	IR	LCC	IR	RVOT	yes	NSVT elimination	
6	5	septum	IR	LV septum	4mm NI	RV septum	yes	non-inducible	
7	3	septum	IR	LV septum	IR	RV septum	no	2 non-inducible, 1 inducilble	
8	7	septum	IR	LV septum	IR	RV septum	yes	non-inducible	
9	4	LV free wall	IR	LV endo	IR	ері	yes	termination and non-inducible	
10	1	LV free wall	IR	LV endo	8mm NI	ері	yes	NSVT elimination	
11	4	LV free wall	IR	LV endo	4mm NI	ері	yes	termination and non-inducible	
12	1	LV summit	IR	LV endo	8mm NI	ері	yes	NSVT elimination	
13	2	septum	IR	RV septum	4mm NI	LV septum	yes	termination and non-inducible	
14	1	LV summit	IR	LV endo	8mm NI	AIVV	yes	NSVT elimination	
15	5	septum	IR	LV septum	IR	RV septum	yes	termination and non-inducible	
16	3	LV summit	IR	LV endo	IR	LAA	yes	termination and non-inducible	
17	2	anterior junction	IR	LV septum	IR	RV septum	yes		
			IR	LV endo	IR	ері		termination and non-inducible	
18	2	LV summit	IR	LV endo	IR	ері	yes	non-inducible	
		septum	IR	LV septum	IR	RV septum	no	inducible	
× IR = irrigation, NI = non-irrigation									

Complication

- Steam pop in 1 case (case no.1) with cardiac sarcoidosis during bipolar RFCA at ventricular septum with 45-50W output.
- → No cardiac tamponade. No septal perforation.
- Complete AV block in 2 cases. In a case with cardiac sarcoidosis (case no.4), complete AV block occurred during LV <u>unipolar ablation</u>. ICD was upgraded to CRTD.

Coronary artery occlusion (LAD#8) was revealed in the patient with HCM (case no.18) after bipolar RFCA.
→ drug eluting stent was implanted.

after PCI

Cardiac CT before ablation

Diastole

Systole

Outcome after bipolar ablation

No.	underlying heart disease	target site in last session	recurrence at 12 mo .	outcome	following therapy	
1	sarcoidosis	septum	-	-	-	
2	OMI	septum	-	-	-	
3	NICM	septum	-	-	-	
4	sarcoidosis	septum	+	ICD shock	bipolar re-RFCA	
5	NICM	LV summit	+	NSVT	medication	
6	sarcoidosis	septum	+	ICD shock	unipolar re-RFCA	
7	LV aneurysm	septum	+	ATP	none	
8	sarcoidosis, p-AVR	septum	+	ICD shock	bipolar re-RFCA	
9	HCM	LV free wall	+	VT storm	chemical ablation	
10	HCM	LV free wall	-	-	-	
11	OMI	LV free wall	+	death due to cancer	-	
12	DCM	LV summit	-	-	-	
13	OMI	septum	-	-	-	
14	DCM	LV summit	-	death due to HF	-	
15	sarcoidosis	septum	-	-	-	
16	DCM	LV summit	-	-	-	
17	sarcoidosis	anterior junction	+	ICD shock	medication	
18	HCM	LV summit	-	-	-	

Survival curves showing VT recurrence

M. Igarashi, A Nogami et.al. Heart Rhythm 2020; 17 (9) 1500-1507

Change in VT burden after bipolar RFCA

Survival from any cause of death

M. Igarashi, A Nogami et.al. Heart Rhythm 2020; 17 (9) 1500-1507

Summary

- Acute success was achieved with bipolar RFCA in most patients with refractory VAs (89%).
- Complications (steam pop, complete AV block, coronary artery occlusion) during the ablation procedure occurred in 4 cases (22%).
- VT recurrence rate was relatively high (44%) at 12 months follow-up after acute success of bipolar RFCA.
- However, VT burden decreased even in the patients with VT recurrence after bipolar RFCA.
- Therefore, re-RFCA for sustained VT was necessary for only 4 patients.

Discussion

Bipolar ablation is 'Off-label' therapy.

- Complication including septal perforation, cardiac tamponade, or complete AV block may happen.
- Local endocardial electrogram and pacemapping are not reliable because of intramural origin.
- Temperature and impedance measurements were available only for the ablation catheter connected to the standard location on the ablation generator.

Impedance decrease is not reliable.

Conclusion

- Bipolar RFCA was useful for refractory VT for acute suppression.
- While the VT recurrence rate during long-term follow-up was relatively high, a significant reduction of VT burden and its favorable effect on cardiac mortality was observed.

Thank you for your attention!

